Screening Experiments in Mobile Channel Measurements

Mark McFarland, P.E.
Chriss Hammerschmidt Bob Johnk, PhD
John Ewan Ron Carey

Institute for Telecommunication Sciences, Boulder, CO www.its.bldrdoc.gov

July 26, 2018

ISART

Outline

What You'll Learn:

- What the main sources of variability in mobile channel measurements are.
- How we learn this.

Outline

- Overview
- 2 The Experiment
- Results
 - Central Tendency Variability
 - Dispersion Variability
- 4 Conclusions

What You'll Learn:

- What the main sources of variability in mobile channel measurements are.
- How we learn this.

•00000

- Overview
- - Central Tendency Variability
 - Dispersion Variability

What do we want to learn?

What are the main sources of variability in mobile channel measurements?

List all potential sources sources of variability:

- Which are the largest and most important?
- Separate the vital few from the trivial many.

What do we want to learn?

What are the main sources of *variability* in mobile channel measurements?

- List all potential sources sources of variability:
 - _____
- Which are the largest and most important?
- Separate the vital few from the trivial many.

How do we learn this?

- Experimental design
- Proper research methods

We studied 15 potential sources of variation:

- Five main effects
- Ten two-way interactions

Overview What did we do?

We manipulated 5 variables:

- Transmitter Height
 (low) (high)
- Transmitter Power (37dBm) (47dBm
- Route(LOS) (non-LOS)
- Rx Vehicle Speed
 (20mph) (30mph)
- Traffic Conditions

 off peak peak

We measured RF power on the highlighted roads. We computed clutter loss.

Here's how we did it.

Transmitter and Receiver

Also varied: Tx Power 37dBm 47dBm

 Overview 0000 ●0
 The Experiment 00000
 Results 000000
 Conclusions 0000
 References 0000

Here's how we did it.

View from LOS route looking at transmit sites (both unobstructed, but for leaves)

 Overview 00000●
 The Experiment 000000
 Results 000000
 Conclusions 0000
 References 00000

Here's how we did it.

View from non-LOS route in direction of transmit sites (both obstructed)

- 2 The Experiment
- Results
 - Central Tendency Variability
 - Dispersion Variability
- 4 Conclusions

One Run: 47dBm (high) offPeak (20mph)

Clutter Loss (dB) 20 15 10 5

One Run: (47dBm) (high) (offPeak) (20mph)

Data shown as time series, boxplots, and histograms.

The design tells us how to set each variable and collect the data.

- Split-plot design was developed for agriculture in 1930s.
- Used when some variables are hard to change.
 - Transmitter height

Traffic

 $1930s \iff 2018$ Agriculture ← Radio Science

Outline

Overview

- Overview
- 2 The Experiment
- Results
 - Central Tendency Variability
 - Dispersion Variability
- 4 Conclusions

Outline

Overview

- Overview
- 2 The Experiment
- Results
 - Central Tendency Variability
 - Dispersion Variability
- 4 Conclusions

Sources of Variation - Central Tendency

Three statistically significant sources of variation in clutter loss central tendency:

- Two main effects:
 - Route (LOS/non-LOS condition)
 - Transmitter height (low/high)
- One interaction effect:
 - Between route and transmitter height

Clutter Loss Main Effects Plot - Central Tendency

Clutter Loss Interaction Plot - Central Tendency

Clutter Loss Pareto Chart - Central Tendency

A significant finding!

- Overview
- 2 The Experiment
- Results
 - Central Tendency Variability
 - Dispersion Variability
- 4 Conclusions

Results Sources of Variation - Dispersion

No statically significant effect

Another significant finding!

Outline

- Overview
- 2 The Experiment
- 3 Results
 - Central Tendency Variability
 - Dispersion Variability
- **4** Conclusions

Conclusions

We learned:

- Which factors in our study influence central tendency.
- No factors in our study influenced dispersion.
- We separated the vital few from the trivial many.

We found similar results for K-Factor and Coefficient of Variation as criterion measure. (not presented)

Impact

- Best practices
- Understanding the mobile radio channel
- Modeling

Conclusions

Clutter Loss Regression Tree Model

Going the other way: great candidate data for classification.

Unsupervised Learning

Can a computer classify measurement data?

Yes, in this case.

References I

Overview

- [1] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2018. [Online]. Available: http://www.R-project.org/
- [2] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Experimenters, 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc., 2005.
- [3] R. E. Kirk, Experimental Design, 4th ed. Thousand Oaks, CA: SAGE Publications, Inc., 2013.
- [4] W. L. Hays, Statistics, 5th ed. Belmont, CA: Wadsworth, 1994.
- [5] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, 5th ed. Boca Raton, FL: CRC Press, 2011.
- [6] E. J. Pedhazur, *Multiple Regression in Behavioral Research*, 3rd ed. Wadsworth Thomson Learning, 1997.

References II

- [7] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2nd ed., ser. Springer Series in Statistics. New York: Springer, 2009.
- [8] D. Randall and C. Welser, "The irreproducibility crisis of modern science," National Association of Scholars, New York, NY, Report, April 2018. [Online]. Available: https://www.nas.org/projects/irreproducibility_report
- [9] D. Kahle and H. Wickham, ggmap: A package for spatial visualization with Google Maps and OpenStreetMap, 2018, R package version 2.5.
 [Online]. Available: http://CRAN.R-project.org/package=ggmap
- [10] H. Wickham, "The split-apply-combine strategy for data analysis," *Journal of Statistical Software*, vol. 40, no. 1, pp. 1–29, 2011. [Online]. Available: http://www.jstatsoft.org/v40/i01/
- [11] G. James, D. Eitten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, 1st ed., ser. Springer Texts in Statistics. New York: Springer, 2013.

Outline

6 Appendix

You should know about this!

Irreproducibility Crisis

50–95% of all published research cannot be reproduced!

- Improper use of statistics
- Arbitrary research methods
- Lack of accountability
- Political correctness
- Groupthink
- Culture

Read the *National Association of Scholars'* shocking report, "The Irreproducibility Crisis of Modern Science."

Best Practices

Verify Independence of Observations

Lag

Filtered Data: every 4th obsv.

No statistical test is robust to a violation of the assumption of independence of observations! I had to take every fourth observation to remove dependence, as shown with the autocorrelation function plots.

Modeling A Clutter Loss Linear Model

	Clutter Loss Model
(Intercept)	5.01 (0.31)***
Route.nonLOS	12.98 (0.45)***
txHeight.low	4.72 (0.43)***
Route.non LOS: tx Height.low	13.45 (0.64)***
R^2	0.90
Adj. R ²	0.90
Num. obs.	604
RMSE	3.94

^{***}p < 0.001, **p < 0.01, *p < 0.05

Modeling Impact

Clutter Loss Linear Model Residuals

